A pr 2 00 7 When does a satellite knot fiber ?
نویسنده
چکیده
Necessary and sufficient conditions are given for a satellite knot to be fibered. Any knot k̃ embeds in an unknotted solid torus Ṽ with arbitrary winding number in such a way that no satellite knot with pattern (Ṽ , k̃) is fibered. In particular, there exist nonfibered satellite knots with fibered pattern and companion knots and nonzero winding number.
منابع مشابه
ar X iv : 0 70 5 . 13 21 v 1 [ m at h . G T ] 9 M ay 2 00 7 Mutant knots with symmetry
Mutant knots, in the sense of Conway, are known to share the same Homfly polynomial. Their 2-string satellites also share the same Homfly polynomial, but in general their m-string satellites can have different Homfly polynomials for m > 2. We show that, under conditions of extra symmetry on the constituent 2-tangles, the directed m-string satellites of mutants share the same Homfly polynomial f...
متن کاملar X iv : 0 80 4 . 13 55 v 1 [ m at h . G T ] 8 A pr 2 00 8 METABELIAN REPRESENTATIONS , TWISTED ALEXANDER POLYNOMIALS , KNOT SLICING , AND MUTATION
Given a knot complement X and its p–fold cyclic cover Xp → X, we identify twisted polynomials associated to GL1(F[t]) representations of π1(Xp) with twisted polynomials associated to related GLp(F[t]) representations of π1(X) which factor through metabelian representations. This provides a simpler and faster algorithm to compute these polynomials, allowing us to prove that 16 (of 18 previously ...
متن کاملar X iv : 0 71 0 . 32 16 v 2 [ m at h . A G ] 5 A pr 2 00 8 KNOT HOMOLOGY VIA DERIVED CATEGORIES OF COHERENT SHEAVES
Using derived categories of equivariant coherent sheaves we construct a knot homology theory which categorifies the quantum sl(m) knot polynomial. Our knot homology naturally satisfies the categorified MOY relations and is conjecturally isomorphic to Khovanov-Rozansky homology. Our construction is motivated by the geometric Satake correspondence and is related to Manolescu’s by homological mirr...
متن کاملar X iv : 0 70 8 . 05 14 v 1 [ m at h . G T ] 3 A ug 2 00 7 Invariants of genus 2 mutants
Pairs of genus 2 mutant knots can have different Homfly polynomials, for example some 3-string satellites of Conway mutant pairs. We give examples which have different Kauffman 2-variable polynomials, answering a question raised by Dunfield et al in their study of genus 2 mutants. While pairs of genus 2 mutant knots have the same Jones polynomial, given from the Homfly polynomial by setting v =...
متن کاملDetecting knot invertibility
We discuss the consequences of the possibility that Vassiliev invariants do not detect knot invertibility as well as the fact that quantum Lie group invariants are known not to do so. On the other hand, finite group invariants, such as the set of homomorphisms from the knot group to M11, can detect knot invertibility. For many natural classes of knot invariants, including Vassiliev invariants a...
متن کامل